Hyperuricemia is closely associated with obesity and metabolic abnormalities, which is also an independent risk factor for cardiovascular diseases. The PPARγ gene, which is linked to obesity and metabolic abnormalities in Han Chinese, might be considered a top candidate gene that is involved in hyperuricemia. This study recruited 457 participants, aged 20–40 years old, to investigate the associations of the PPARγ gene and metabolic parameters with hyperuricemia. Three tag-single nucleotide polymorphisms, rs2292101, rs4684846, and rs1822825, of the PPARγ gene were selected to explore their association with hyperuricemia. Risk genotypes on rs1822825 of the PPARγ gene exhibited statistical significance with hyperuricemia (odds ratio: 1.9; 95% confidence interval: 1.05–3.57). Although gender, body mass index (BMI), serum total cholesterol concentration, or protein intake per day were statistically associated with hyperuricemia, the combination of BMI, gender, and rs1822825, rather than that of age, serum lipid profile, blood pressure, and protein intake per day, satisfied the predictability for hyperuricemia (sensitivity: 69.3%; specificity: 83.7%) in Taiwan-born obese Han Chinese. BMI, gender, and the rs1822825 polymorphism in the PPARγ gene appeared good biomarkers in hyperuricemia; therefore, these powerful indicators may be included in the prediction of hyperuricemia to increase the accuracy of the analysis.

Introduction

Recent research has reported that hyperuricemia is an independent predictor for all-cause cardiovascular risk (Pessell, 1980; Chen et al., 2009b), which is also associated with high in-hospital mortality and poor long-term survival in acute myocardial infarction patients (Car and Trkulja, 2009). Several studies indicated that hyperuricemia was closely associated with obesity and obesity-related metabolic disorders, including hyperglycemia/insulin resistance (Rathmann et al., 1998; Lin et al., 2008), hyperlipidemia (Roux et al., 1972; Barats and Smolenskaia, 1990; Nakamura, 1996), and hypertension (Hollister et al., 1967; Oyama et al., 2006; Cho et al., 2008; Basen-Engquist and Chang, 2011; Hsu et al., 2011). Higher odds ratios (ORs) for hyperuricemia were observed in Taiwan-born Han Chinese than in U.S. individuals within the same body mass index (BMI) range (Pan et al., 2004). The prevalence of obesity/overweight in Taiwan has been increasing alarmingly (Page et al., 2004; Ho and Tsai, 2007); therefore, an understanding of the fundamental mechanism of hyperuricemia becomes critical to prevent hyperuricemia in Han Chinese in Taiwan.

Previous studies indicated that hyperuricemia was associated with a long list of candidate genes such as solute carrier family 2, member 9 (SLC2A9) (Rule et al., 2011), solute carrier family 22, member 12 (SLC22A12) (Jang et al., 2008), and solute carrier family 17, member 3 (SLC17A3) (Polasek et al., 2010). Additional candidates include the genes encoding ATP-binding cassette, sub-family G, member 2 (ABCG2) (Yamagishi et al., 2010), klotho (KL) (Shimoyama et al., 2009), guanine nucleotide binding protein, beta polypeptide 3 (GNB3) (Suwazono et al., 2006), methylenetetrahydrofolate reductase (MTHFR) (Zuo et al., 2000), nitric oxide synthase 3 (NOS3) (Wang et al., 2007), and adrenoceptor beta 2 (ADRB2).
(Masuo et al., 2005), and adrenoceptor beta 3 (ADRB3) (Wang et al., 2002). However, considerable heterogeneity on the putative hyperuricemia loci was observed among different ethnic groups.

The PPAR\gamma gene is associated with xanthine oxidase/reductase activity (Cheung et al., 2007), glucose (Ylonen et al., 2008; Ruchat et al., 2010), blood pressure (Halabi et al., 2008), and lipid metabolism (Iwata et al., 2001; Ylonen et al., 2008; Johansson et al., 2009). We also have previously reported that polymorphisms of the PPAR\gamma gene were strongly associated with obesity in Han Chinese (Chen et al., 2009a). Furthermore, we reanalyzed the data retrieved from a human genome-wide gene study (Chung et al., 2011) and found that the correlation coefficients among serum uric acid level, PPAR\gamma gene, and xanthine oxidase/reductase (XDH) gene expression were –0.1 for serum uric acid and PPAR\gamma expression (p = 0.08), –0.15 for PPAR\gamma and XDH expression (p = 3 x 10\(^{-4}\)), and –0.1 for serum uric acid and XDH expression (p = 0.03), respectively, using a new RNA expression analyzing platform (Human OneArray\(^\text{TM}\) v5 platform; Phalanx Biotech) (Appendix Table A1).

In sum, the PPAR\gamma gene may play an important role in hyperuricemia for Han Chinese. Therefore, we conducted this study using tag-single nucleotide polymorphisms (SNPs) of the PPAR\gamma gene and xanthine oxidase/reductase (XDH) gene to explore the association of the PPAR\gamma polymorphism with hyperuricemia. Moreover, we tried to examine which factors, including age, gender, blood pressure, blood lipid profiles, blood creatinine, and blood urea nitrogen levels, exhibited potential predictability in hyperuricemia for Han Chinese, and how they were combined to exert their effects.

Materials and Methods

A total of 457 Han Chinese with normal renal function, aged 20–40 years old, were recruited in the outpatient clinic for health examination at Taipei Medical University Hospital between May 2008 and April 2009. All anthropometric and laboratory measurements were performed by the standard procedures. A 3-day, 24-h recall was conducted by a registered dietician at the beginning of the study. The quantification of three macronutrients was converted according to Food Nutrition Database from Taiwan Food and Drug Administration (http://doh.gov.tw/FoodAnalysis/ingredients.htm). The study protocol was approved by the ethics committees at both hospitals, and the informed consent forms were collected from all participants before the commencement of the study. All patients were checked for normal renal function by evaluating their blood creatinine and blood urea nitrogen levels.

Study design

Subjects were assigned to either the hyperuricemia (HUA) or non-hyperuricemia (NHUA) group according to their serum uric acid levels. Hyperuricemia was diagnosed based on a serum uric acid level greater than or equal to 7.0 mg/dL in men and 6.0 mg/dL in women (Dincer et al., 2002; Chizyński and Rozycka, 2005). Any participant with hypertension (systolic blood pressure >140 mmHg and diastolic blood pressure >90 mmHg), lowering serum uric acid agents, or type 2 diabetes in the last 6 months was excluded. The serum blood urea nitrogen, serum creatinine, and urine protein of all patients were within the normal range as evaluated by physicians. The associations between hyperuricemia and three tag-SNPs (rs2292101, rs4684846, and rs1822825) of the PPAR\gamma gene were assessed by allelic association analysis; the significant SNP was identified for subsequent analysis, and the synergistic effect of the three tag-SNPs was also evaluated. Next, we conducted a series of analyses to investigate which indicators, including genetic elements, metabolic factors, and anthropometry parameters, could predict hyperuricemia, and whether these indicators exerted synergistic effects.

Genomic DNA extraction, SNPs selection, and genotyping

Genomic DNA was extracted from cells in the buffy coat layer using a modified phenol-chloroform method (Chomczynski and Sacchi, 1987, 2006; Puissant and Houdébine 1990). The quality of the DNA samples was confirmed, and the samples were diluted to 2.5–3.0 ng/μL for multiplex polymerase chain reaction. Three tag-SNPs, rs2292101, rs4684846, and rs1822825, of the PPAR\gamma gene were selected from the dbSNP database (http://ncbi.nlm.nih.gov/SNP) and used for genotyping by the SNP stream genotyping system (Beckman Coulter, Inc.). To ensure unbiased selection, one tag-SNP was chosen from each linkage disequilibrium (LD) block as defined in the CHB (Han Chinese in Beijing) database (www.hapmap.org).

Statistical analysis

All data analysis was performed with SAS 9.3 software. An analysis of covariance model was applied to adjust for age, gender, and BMI in all health-related indicators. The allele frequency analysis and Hardy–Weinberg equilibrium were performed by the PROC ALLELE procedure. The genetic loci that showed significant LD (p < 0.05) were subsequently analyzed for the association between genotype and disease status. The association between candidate loci and hyperuricemia was tested by logistic regression models, and the p-values were calculated based on 1000 random permutations. A p-value <0.05 denotes significant difference between the groups. Moreover, variables significantly associated with hyperuricemia (Table 1) were selected to perform the stepwise-discriminant analysis by the STEPDISC procedure for model selection in order to find the variables with powerful potency in hyperuricemia. The pooled within-class standardized canonical coefficient was further calculated to show the relative influence in hyperuricemia among the identified variables. Subsequently, the Mahalanobis’ distance analysis was applied to show the sensitivity and specificity of the hyperuricemia prediction using the powerful factors, derived from the stepwise-discriminant analysis, related to hyperuricemia.

The multiple-variable linear regression analysis was performed to search for high impact factors in serum uric acid level prediction. Statistical significant variables in both stepwise-discriminant and linear regression analyses were considered as the influential factors in uric acid metabolism for Han Chinese. The Mahalanobis’ distance method was applied to hyperuricemia prediction using variables with great influence in uric acid metabolism for Han Chinese.

Results

As shown in Table 1, individuals with HUA exhibited less favorable profiles of the anthropometric and biochemical
Table 2. The Analysis of Genotypic Association Between Hyperuricemia and Three Selective tag-Single Nucleotide Polymorphisms of the PPARγ Gene

<table>
<thead>
<tr>
<th>SNP</th>
<th>NHUA, n</th>
<th>HUA, n</th>
<th>OR (95% CI)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs1822825</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>46</td>
<td>22</td>
<td>1.9 (1.05–3.57)</td>
</tr>
<tr>
<td>AG</td>
<td>182</td>
<td>49</td>
<td>0.70 (0.40–1.10)</td>
</tr>
<tr>
<td>GG</td>
<td>115</td>
<td>43</td>
<td>1</td>
</tr>
<tr>
<td>rs4684846</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GG</td>
<td>76</td>
<td>27</td>
<td>0.9 (0.48–1.40)</td>
</tr>
<tr>
<td>GA</td>
<td>177</td>
<td>51</td>
<td>0.64 (0.38–0.74)</td>
</tr>
<tr>
<td>AA</td>
<td>88</td>
<td>35</td>
<td>1</td>
</tr>
</tbody>
</table>

The p-values were calculated based on 1000 random permutations. Genotyping success rate was 100% and 99.3% for rs1822825 and rs4684846, respectively.

*Adjusted for gender, age group, and BMI group. OR (95% CI), odds ratio (95% confidence interval).
Table 3. Selected Variable Significantly Associated with Hyperuricemia by Using Discriminant Analysis

<table>
<thead>
<tr>
<th>Variable</th>
<th>F-Value</th>
<th>p-Value (Pr > F)</th>
<th>p-Value -Value for Lambda</th>
<th>Pooled within-class standardized canonical coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>15.68</td>
<td><0.001</td>
<td><0.001</td>
<td>0.30</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>210.63</td>
<td><0.001</td>
<td><0.001</td>
<td>0.90</td>
</tr>
<tr>
<td>rs1822825</td>
<td>13.56</td>
<td>0.047</td>
<td><0.001</td>
<td>0.15</td>
</tr>
<tr>
<td>Serum cholesterol (mg/dL)</td>
<td>0.86</td>
<td>0.354</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Blood pressure (mmHg)</td>
<td>0.10</td>
<td>0.939</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Systolic</td>
<td>0.10</td>
<td>0.966</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Protein intake (g/day)</td>
<td>0.09</td>
<td>0.972</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

The p-value for Wilks’ Lambda in multi-variable model (gender, BMI, and rs1822825) was less than 0.0001 (<0.0001).

The stepwise method was performed.

Discussion

This is a pioneer study that explores hyperuricemia-associated candidate genes in Han Chinese. Our data indicate two main findings. First, hyperuricemic individuals exhibited abnormal, subclinical manifestations of cardiovascular diseases. Second, the tag-SNP rs1822825 of the PPARgamma gene was associated with hyperuricemia, and the synergistic effect of rs1822825, gender, and BMI appeared a good prediction for hyperuricemia in Taiwan-born Han Chinese, rather than dietary protein intake per day (Table 1). Therefore, uric acid metabolism may be closely associated with genetic components, rather than dietary protein intake, for Han Chinese.

It is well known that PPARgamma gene encodes a nuclear receptor involved in adipocyte differentiation, which functions as a lipid sensor in the regulation of energy storage and the metabolism of glucose and lipid (Rosen et al., 1999; Picard and Auwerx, 2002; Carmen and Victor, 2006). Nakamura (1996) has indicated that both insulin resistance and abnormal lipid metabolism were associated with hyperuricemia. In addition, individuals with hyperuricemia had greater prevalence in metabolic abnormalities of lipid and glucose and had significantly higher blood pressure as compared with their normal counterparts (Nakamura, 1996). Thus, we hypothesized that hyperuricemia may partially result from metabolic abnormalities in the regulation pathway of the PPARgamma gene.

Recent studies have shown that PPARgamma gene expression is associated with uric acid metabolism such that PPARgamma gene expression is related to monosodium urate monohydrate levels (Akahoshi et al., 2003) and xanthine oxidoreductase activity (Cheung et al., 2007). Since xanthine oxidoreductase plays an important role in uric acid metabolism (Fields et al., 1996; Watts, 1966), the preliminary data indicated that PPARgamma gene expression was substantially correlated with XDH gene and serum uric acid level (Appendix Table A1). Besides, we previously reported that PPARgamma was associated with obesity in Han Chinese (Chen et al., 2009a). The current findings also verified that the variables with the best discriminant capacity for hyperuricemia diagnosis included gender, BMI, and rs1822825 (Tables 3–5). We tried to predict the probability of hyperuricemia using gender and BMI only. The results displayed that the sensitivity decreased to 63.9% and the 1-specificity increased from 16.3% to 23.9% (data not shown).

Accordingly, PPARgamma gene owns potential capacity for the predisposition to hyperuricemia due to its association with xanthine oxidase/reductase activity (Cheung et al., 2007), obesity (Chen et al., 2009a), glucose (Ylonen et al., 2008; Ruchat et al., 2010), blood pressure (Halabi et al., 2008), and lipid (Iwata et al., 2001; Ylonen et al., 2008; Johansson et al., 2009) homeostasis. We supposed that PPARgamma gene may play a foundational role in hyperuricemia etiology rather than metabolic abnormality, dietary protein intake, and obesity, which were downstream of the physiological pathway regulated by PPARgamma gene.

Table 4. The Influential Factors in Serum Uric Acid Level Prediction for Han Chinese with a Linear Regression Analysis

<table>
<thead>
<tr>
<th>Model 1*</th>
<th>rs1822825, R vs. NR</th>
<th>Gender, M vs. F</th>
<th>Adjusted-R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>p-Value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td><0.001</td>
<td>1.05</td>
<td>0.9</td>
</tr>
<tr>
<td>0.05</td>
<td><0.001</td>
<td>0.95</td>
<td>0.9</td>
</tr>
<tr>
<td>0.16</td>
<td><0.001</td>
<td>1.42</td>
<td>—</td>
</tr>
<tr>
<td>0.01</td>
<td><0.001</td>
<td>—</td>
<td>0.83</td>
</tr>
<tr>
<td>0.18</td>
<td><0.001</td>
<td>0.50</td>
<td>—</td>
</tr>
<tr>
<td>0.02</td>
<td><0.001</td>
<td>—</td>
<td>0.84</td>
</tr>
</tbody>
</table>

Model 1: The forward-selection model was performed, where gender, BMI, and rs1822825 were selected; Model 2: Male participants involved in model 2; Model 3: Female participants involved in model 3.

Table 5. The Prediction of Hyperuricemia using Gender, Body Mass Index, and rs1822825 Polymorphism on the PPARgamma Gene

<table>
<thead>
<tr>
<th>Prediction</th>
<th>Hyperuricemia</th>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>N</td>
<td>287</td>
<td>56</td>
</tr>
<tr>
<td>%</td>
<td>83.7%</td>
<td>16.3%</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>N</td>
<td>35</td>
<td>79</td>
</tr>
<tr>
<td>%</td>
<td>30.7%</td>
<td>69.3%</td>
<td></td>
</tr>
</tbody>
</table>

The Mahalanobis’s distance was applied in this analysis. The previous probability of hyperuricemia and non-hyperuricemia was 0.4 and 0.6, respectively.
PPAR\textsubscript{\gamma} ASSOCIATED WITH HYPERURICEMIA

Six mRNA isoforms (PPAR\textsubscript{\gamma}1, PPAR\textsubscript{\gamma}2, PPAR\textsubscript{\gamma}3, PPAR\textsubscript{\gamma}4, PPAR\textsubscript{\gamma}2ORF4, and PPAR\textsubscript{\gamma}3ORF4) of the PPAR\textsubscript{\gamma} gene, resulting from alternative splicing, were identified (Auwerx, 1999; Rosen and Spiegelman, 2001; Cecil et al., 2006). The rs1822825 tag-SNP used in this study, spanning a genomic region from intron 3 to intron 5, was selected from an LD block that includes the stop codon of PPAR\textsubscript{\gamma}3ORF4 (exon 4). Another tag-SNP, rs4684846, located in the promoter region between exon A1 and exon A2, was chosen from an LD block whose 5' and 3' ends are near the transcriptional start site of PPAR\textsubscript{\gamma}3 (about 5 kb apart) and −681 C/G polymorphism (about 9 kb apart), respectively. The current study revealed that the tag-SNP, rs1822825, was strongly associated with hyperuricemia where the association was still significant after having adjusted for rs4684846, another tag-SNP. The rs1822825 SNP is a synonymous polymorphism such that both alleles produce the same polypeptide sequence. In general, synonymous polymorphisms are relatively unimportant genetic markers. Thus, further studies are necessary to clarify the role of rs1822825 and its corresponding LD blocks.

Hyperuricemia is one of the major indicators in cardiovascular diseases (Fessel, 1980; Lee et al., 1995). Recently, it has even been reported that hyperuricemia is an independent risk indicator for all-cause cardiovascular disease and ischemic stroke mortality (Fessel, 1980; Chen et al., 2009b), and it is associated with higher in-hospital mortality and poorer long-term survival in acute myocardial infarction patients (Car and Trkulja, 2009). However, the decreased prevalence of hyperuricemia was observed in elderly or women after the adjustment of genetic influence, which is similar to the findings derived from a Nutrition and Health Survey conducted in Taiwan (Chang et al., 2001). This may contribute to the higher morbidity of myocardial infarction in the younger and male population.

A certain proportion of normal uricemic individuals carried hyperuricemia-risk genetic variants without exhibiting hyperuricemic phenotypes, further suggesting that a hyperuricemia-induced environment is a prerequisite of developing hyperuricemia. Lack of physical activity and purine intake data was one limitation of this study, as uric acid metabolism is affected by dietary purine and physical activity. However, some issues contingent on the original data collection and available funding support cannot be addressed directly in this study. We will incorporate physical activity data, purine intake, and more candidate genes into the follow-up study to confirm the biological mechanism of hyperuricemia.

The current results indicated that the genetic factors in our study showed a relatively smaller effect than that of gender and BMI. Thus, other candidate genetic markers of hyperuricemia remain to be found. The pooled genetic effect could play a pivotal role in the predisposition of hyperuricemia diagnosis. In addition, the sample size of this study was moderate; the power of this study only allowed for identifying genetic variants with large effects. Therefore, a larger sample size and more genetic variants are warranted to ensure significant association and profound interpretation.

Conclusion

The variants of rs1822825 on the PPAR\textsubscript{\gamma} gene were associated with hyperuricemia. BMI, gender, and rs1822825 on the PPAR\textsubscript{\gamma} gene, rather than blood lipid profiles, blood pressure, and protein intake per day, served as good indicators for hyperuricemia. This finding might be applicable to the Han Chinese in Taiwan to identify potential risk assessments for hyperuricemia.

Acknowledgments

The authors gratefully thank all researchers and subjects for their participation. They also deeply thank Taipei Medical University Hospital and Chang Jung Christian University for their support. This project was sponsored by the National Science Council grants, NSC 98-2320-B-309-002-MY3 to M.-F. Lee and NSC 100-2320-B-309-001, to H.-H. Chen.

Author Disclosure Statement

This article is not currently being considered by other journals. All authors declare that they have no competing financial interests, agree to submit the paper to this journal, and transfer copyright to the publisher.

References

Hsu HS, Liu CS, Pi-Sunyer FX, Hollister LE, Overall JE, Snow HL (1967)

PPARγ ASSOCIATED WITH HYPERURICEMIA

Address correspondence to:
Hsin-Hung Chen, Ph.D.
Department of Nutrition and Health Sciences
Chang Jung Christian University
No.396, Sec. 1, Changrong Road
Guiren District
Tainan City 71101
Taiwan, Republic of China
E-mail: hsinhung@mail.cjcu.edu.tw

Appendix Table A1. The Correlation Among Serum Uric Acid Level, PPARγ RNA Expression, and XDH RNA Expression

<table>
<thead>
<tr>
<th></th>
<th>Serum uric acid level</th>
<th>PPARγ gene expression</th>
<th>XDH gene expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum uric acid level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correlation coefficient</td>
<td>1</td>
<td>-0.1</td>
<td>-0.1</td>
</tr>
<tr>
<td>p-Value</td>
<td>0.08</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>PPARγ gene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correlation coefficient</td>
<td>-0.1</td>
<td>1</td>
<td>-0.15</td>
</tr>
<tr>
<td>p-Value</td>
<td>0.08</td>
<td>3×10^-4</td>
<td></td>
</tr>
<tr>
<td>XDH gene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correlation coefficient</td>
<td>-0.1</td>
<td>-0.15</td>
<td>1</td>
</tr>
<tr>
<td>p-Value</td>
<td>0.03</td>
<td>3×10^-4</td>
<td></td>
</tr>
</tbody>
</table>

The Pearson’s correlation was performed.

Appendix Table A2. The Allelic Association Between Hyperuricemia and Three Selected tag-Single Nucleotide Polymorphisms on the PPARγ Gene

<table>
<thead>
<tr>
<th>Allele frequency (%)</th>
<th>HUA</th>
<th>NHUA</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs1822825</td>
<td>A/G</td>
<td>A/G</td>
<td>0.001</td>
</tr>
<tr>
<td>rs4684846</td>
<td>A/G</td>
<td>A/G</td>
<td>0.048</td>
</tr>
<tr>
<td>rs2292101</td>
<td>C/T</td>
<td>C/T</td>
<td>0.101</td>
</tr>
</tbody>
</table>

Appendix
AUTHOR QUERY FOR GTMB-2012-0231-VER9-LEE_1P

AU1: Please note that the gene symbols in any article should be formatted as per the gene nomenclature. Thus, please make sure that the gene symbols, if any in this article, are italicized.

AU2: Please review all authors’ surnames for accurate indexing citations.

AU3: Please expand CHB.

AU4: Reference Ohtuska et al. (2007) is provided in list but not cited in text. Please check.

AU5: Please define HDL.

AU6: Significance of “a” not given in Table 4 footnote. Please check.

AU7: Appendix 1 and 2 have been changed to Appendix Table A1 and A2, respectively. Please check.